
Package: funkycells (via r-universe)
November 3, 2024

Title Functional Data Analysis for Multiplexed Cell Images

Version 1.1.1.9000

Description Compare variables of interest between (potentially large
numbers of) spatial interactions and meta-variables. Spatial
variables are summarized using K, or other, functions, and
projected for use in a modified random forest model. The model
allows comparison of functional and non-functional variables to
each other and to noise, giving statistical significance to the
results. Included are preparation, modeling, and interpreting
tools along with example datasets, as described in VanderDoes
et al., (2023) <doi:10.1101/2023.07.18.549619>.

License GPL (>= 3)

URL https://github.com/jrvanderdoes/funkycells,

https://jrvanderdoes.github.io/funkycells/

BugReports https://github.com/jrvanderdoes/funkycells/issues

Depends R (>= 2.10)

Imports fda, ggplot2, rpart, spatstat.explore, spatstat.geom, stats,
stringr, tidyr

Suggests knitr, pROC, rmarkdown, scales, testthat (>= 3.0.0)

VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

Repository https://jrvanderdoes.r-universe.dev

RemoteUrl https://github.com/jrvanderdoes/funkycells

RemoteRef HEAD

RemoteSha 53a257086f4d39c36069fbeb390d868e9e9bd475

1

https://doi.org/10.1101/2023.07.18.549619
https://github.com/jrvanderdoes/funkycells
https://jrvanderdoes.github.io/funkycells/
https://github.com/jrvanderdoes/funkycells/issues

2 computePseudoROCCurves

Contents
computePseudoROCCurves . 2
funkyForest . 3
funkyModel . 4
getCountData . 6
getKFunction . 7
getKsPCAData . 9
plotPP . 10
plot_K_functions . 11
predict_funkyForest . 13
simulateMeta . 14
simulatePP . 16
TNBC . 17
TNBC_meta . 18
TNBC_pheno . 18

Index 20

computePseudoROCCurves

Compute Pseudo-ROC Curves

Description

An receiver operating characteristic (ROC) curve is a curve showing the performance of a classi-
fication model at all classification thresholds. True ROC can only be computed for two-options,
but we can consider each classification, i.e. prediction, correct or incorrect and overlay the curves.
Note this means the lines may cover each other and be difficult to see.

Usage

computePseudoROCCurves(trueOutcomes, modelPercents)

Arguments

trueOutcomes Vector of the true results

modelPercents Data.frame with columns named after the true outcomes, giving the percent of
selecting that outcome. This is what is returned predict.RandomForest_PC with
type=’all’ in object PredPerc[-1] (first column is the predictions).

Details

This function requires the package ’pROC’ to be installed.

Value

ggplot object containing the ROC curves.

funkyForest 3

Examples

percents <- data.frame(c(0.980, 0.675, 0.878, 0.303, 0.457, 0.758,
0.272, 0.524, 0.604, 0.342, 0.214, 0.569,
0.279, 0.128, 0.462, 0.098, 0.001, 0.187),

c(0.005, 0.160, 0.100, 0.244, 0.174, 0.143,
0.652, 0.292, 0.040, 0.312, 0.452, 0.168,
0.173, 0.221, 0.281, 0.029, 0.005, 0.057),

c(0.015, 0.165, 0.022, 0.453, 0.369, 0.099,
0.076, 0.084, 0.156, 0.346, 0.334, 0.263,
0.548, 0.651, 0.257, 0.873, 0.994, 0.756))

colnames(percents) <- c('0','1','2')
proc <- computePseudoROCCurves(c(0, 0, 0, 0, 0, 0,

1, 1, 1, 1, 1, 1,
2, 2, 2, 2, 2, 2),

percents)

funkyForest Compute a Modified Random Forest Model

Description

This function creates a modified random forest model for principal component and meta-data. This
can be useful to get a final model, but we recommend use of randomForest_CVPC in general, which
includes the final model.

Usage

funkyForest(
data,
outcome = colnames(data)[1],
unit = colnames(data)[2],
nTrees = 500,
varImpPlot = TRUE,
metaNames = NULL,
keepModels = TRUE,
varSelPercent = 0.8,
method = "class"

)

Arguments

data Data.frame of outcome and predictors. The predictors include groups of vari-
ables which are finite projections of a higher dimensional variables as well as
single meta-variables.
Any replicate data, i.e. repeated observations, should already be handled. The
unit column is needed just to drop data (so pre-removing and giving NULL
works). Typically use the results from getKsPCAData, potentially with meta-
variables attached.

4 funkyModel

outcome (Optional) String indicating the outcome column name in data. Default is the
first column of data.

unit (Optional) String indicating the unit column name in data. Default is the second
column of data.

nTrees (Optional) Numeric indicating the number of trees to use in the random forest
model. Default is 500.

varImpPlot (Optional) Boolean indicating if variable importance plots should also be re-
turned with the model. Default is TRUE.

metaNames (Optional) Vector with the column names of data that correspond to metavari-
ables. Default is NULL.

keepModels (Optional) Boolean indicating if the individual models should be kept. Can get
large in size. Default is TRUE as it is needed for predictions.

varSelPercent (Optional) Numeric in (0,1) indicating (approx) percentage of variables to keep
for each tree. Default is 0.8.

method (Optional) Method for rpart tree to build random forest. Default is "class". Cur-
rently this is the only tested method. This will be expanded in future releases.

Value

A list with entries

1. varImportanceData: Data.frame for variable importance information.

2. (Optional) model: List of CART that builds the random forest model.

3. (Optional) varImportancePlot: Variable importance plots.

Examples

ff <- funkyForest(
data = TNBC[, c(1:8, ncol(TNBC))],
outcome = "Class", unit = "Person",
metaNames = c("Age")
)

funkyModel Fit a Modified Random Forest Model with Bounds and Alignment

Description

The function fits a modified random forest model to principal components of spatial interactions as
well as meta-data. Additionally permutation and cross-validation is employed to improve under-
standing of the data.

funkyModel 5

Usage

funkyModel(
data,
K = 10,
outcome = colnames(data)[1],
unit = colnames(data)[2],
metaNames = NULL,
synthetics = 100,
alpha = 0.05,
silent = FALSE,
rGuessSims = 500,
subsetPlotSize = 25,
nTrees = 500,
method = "class"

)

Arguments

data Data.frame of outcome and predictors. The predictors include groups of vari-
ables which are finite projections of a higher dimensional variables as well as
single meta-variables.
Any replicate data, i.e. repeated observations, should already be handled. The
unit column is needed just to drop data (so pre-removing and giving NULL
works). Typically use the results from getKsPCAData, potentially with meta-
variables attached.

K (Optional) Numeric indicating the number of folds to use in K-fold cross-validation.
The default is 10.

outcome (Optional) String indicating the outcome column name in data. Default is the
first column of data.

unit (Optional) String indicating the unit column name in data. Default is the second
column of data.

metaNames (Optional) Vector indicating the meta-variables to be considered. Default is
NULL.

synthetics (Optional) Numeric indicating the number of synthetics for variables (one set
of sythethics for functional variables and one for each meta-variable). If 0 are
used, the data cannot be aligned properly. Default is 100.

alpha (Optional) Numeric in (0,1) indicating the significance used throughout the anal-
ysis. Default is 0.05.

silent (Optional) Boolean indicating if output should be suppressed when the function
is running. Default is FALSE.

rGuessSims (Optional) Numeric value indicating the number of simulations used for guess-
ing and creating the guess estimate on the plot. Default is 500.

subsetPlotSize (Optional) Numeric indicating the number of top variables to include in a sub-
set graph. If this is larger than the total number then no subset graph will be
produced. Default is 25.

6 getCountData

nTrees (Optional) Numeric indicating the number of trees to use in the random forest
model. Default is 500.

method (Optional) Method for rpart tree to build random forest. Default is "class". Cur-
rently this is the only tested method. This will be expanded in future releases.

Value

List with the following items:

1. model: The funkyForest Model fit on the entire given data.

2. VariableImportance: Data.frame with the results of variable importance indices from the mod-
els and CV. The columns are var, est, sd, and cvSD.

3. AccuracyEstimate: Data.frame with model accuracy estimates: out-of-bag accuracy (OOB),
biased estimate (bias), and random guess (guess). The columns are OOB, bias, and guess.

4. NoiseCutoff: Numeric indicating noise cutoff (vertical line).

5. InterpolationCutoff: Vector of numerics indicating the interpolation cutoff (curved line).

6. AdditionalParams: List of additional parameters for reference: Alpha and subsetPlotSize.

7. viPlot: ggplot2 object for vi plot with standardized results. It displays ordered underlying
functions and meta-variables with point estimates, sd, noise cutoff, and interpolation cutoff all
based on variable importance values.

8. subset_viPlot: (Optional) ggplot2 object for vi plot with standardized results and only top
subsetPlotSize variables. It displays ordered underlying functions and meta-variables with
point estimates, sd, noise cutoff, and interpolation cutoff all based on variable importance
values.

Examples

Parameters are reduced beyond recommended levels for speed
fm <- funkyModel(

data = TNBC[, c(1:8, ncol(TNBC))],
outcome = "Class", unit = "Person",
metaNames = c("Age"),
nTrees = 5, synthetics = 10,
silent = TRUE

)

getCountData Get Agent Count Data

Description

This function gets the average percent agent counts per replicate, if there are replicates (i.e. replicate
is not NULL), then the agent percents are calculated for each replicate and these percentages are
averaged.

getKFunction 7

Usage

getCountData(
agent_data,
outcome,
unit,
replicate = NULL,
type = "type",
data_append = NULL

)

Arguments

agent_data Data.frame of agent data information, with columns as defined in subsequent
parameters

outcome String of the column name in data indicating the outcome or response.

unit String of the column name in data indicating a unit or base thing. Note this unit
may have replicates.

replicate (Optional) String of the column name in data indicating the replicate id. Default
is NULL.

type (Optional) String of the column name in data indicating the type. Default is
type.

data_append (Optional) Data.frame with outcome, patient that the results can be appended to
if desired. Default is NULL.

Value

List with two elements:

• dat: Data.frame with outcome, unit, data_append, and the count data. Columns of the count
data are named after the type and are given in the next list entry.

• agents: Vector of the the types, i.e. the column names for the new count data. This can be
treated as meta data for funkyForest.

Examples

data_ct <- getCountData(TNBC_pheno[TNBC_pheno$Phenotype %in% c('Tumor','B'),],
outcome="Class", unit="Person",type="Phenotype")

getKFunction Get K function

Description

This function computes the K function between the two agents for each unit, potentially averaging
over replicates, or repeated measures.

8 getKFunction

Usage

getKFunction(
data,
agents,
unit,
replicate = NULL,
rCheckVals = NULL,
xRange = NULL,
yRange = NULL,
edgeCorrection = "isotropic"

)

Arguments

data Dataframe with column titles for at least x, y, agents, and unit. For consistency
(and avoiding errors), use that order. Additionally, replicate can be added.

agents Two value vector indicating the two agents to use for the K function, the first to
the second. These should be in the unit column.

unit String of the column name in data indicating a unit or base thing. Note this unit
may have replicates.

replicate (Optional) String of the column name in data indicating the unique replicates,
or repeated measures.

rCheckVals (Optional) Numeric vector indicating the radius to check. Note, if note specified,
this could take a lot of memory, particularly with many units and replicates.

xRange, yRange (Optional) Two value numeric vector indicating the min and max x / y values.
Note this is re-used for all images. The default just takes the min and max from
each image. This allows different sized images, but the edges are defined by
some agent location.

edgeCorrection (Optional) String indicating type of edgeCorrection(s) to apply when computing
the K functions. Options include: "border", "bord.modif", "isotropic", "Ripley",
"translate", "translation", "periodic", "none", "best" or "all" selects all options.

Value

data.frame with the first column being the checked radius and the remaining columns relating to the
K function for each unit at those points. If a K function could not be computed, perhaps due to lack
of data, an NA is returned for the K function.

Examples

KFunction <- getKFunction(
agents = c("B", "Tumor"), unit = "Person",
data = TNBC_pheno[TNBC_pheno$Person == 1, -1],
rCheckVals = seq(0, 50, 1),
edgeCorrection = "isotropic"

)

getKsPCAData 9

getKsPCAData Get K Functions and Compute Principal Components

Description

This function computes K functions from point process data then converts it into PCs. Note, if there
are replicates, i.e. multiple observations per unit, the K functions will be a weighted average based
on the number of the first agents.

Usage

getKsPCAData(
data,
outcome = colnames(data)[1],
unit = colnames(data)[5],
replicate = NULL,
rCheckVals = NULL,
nPCs = 3,
agents_df = as.data.frame(expand.grid(unique(data[, 4]), unique(data[, 4]))),
xRange = NULL,
yRange = NULL,
edgeCorrection = "isotropic",
nbasis = 21,
silent = FALSE,
displayTVE = FALSE

)

Arguments

data Data.frame with column titles for at least outcome, x, y, agents, and unit. For
consistency (and avoiding errors), use that order. Additionally, replicate can be
added.

outcome (Optional) String of the column name in data indicating the outcome or re-
sponse. Default is the 1st column.

unit (Optional) String of the column name in data indicating a unit or base thing.
Note this unit may have replicates. Default is the 4th column.

replicate (Optional) String of the column name in data indicating the replicate id. Default
is NULL.

rCheckVals (Optional) Numeric vector indicating the radius to check. Note, if not specified,
this could take a lot of memory, particularly with many units and replicates.

nPCs (Optional) Numeric indicating the number of principal components.

agents_df (Optional) Two-column data.frame. The first for agent 1 and the second for
agent 2. Both should be in data agents column. This determines which K func-
tions to compute. Default is to compute all, but may be misspecified if the data
is in a different order.

10 plotPP

xRange, yRange (Optional) Two value numeric vector indicating the min and max x/y values.
Note this is re-used for all replicates. The default just takes the min and max x
from each replicate. This allows different sized images, but the edges are defined
by some agent location.

edgeCorrection (Optional) String indicating type of edgeCorrection(s) to apply when computing
the K functions. Options include: "border", "bord.modif", "isotropic", "Ripley",
"translate", "translation", "periodic", "none", "best" or "all" selects all options.

nbasis (Optional) Numeric indicating number of basis functions to fit K functions in
order to compute PCA. Current implementation uses a b-spline basis.

silent (Optional) Boolean indicating if progress should be printed.

displayTVE (Optional) Boolean to indicate if total variance explained (TVE) should be dis-
played. Default is FALSE.

Value

Data.frame with the outcome, unit and principle components of computed K functions.

Examples

dataPCA_pheno <- getKsPCAData(
data = TNBC_pheno, unit = "Person",
agents_df = data.frame(rep("B", 2), c("Tumor", "Fake")),
nPCs = 3,
rCheckVals = seq(0, 50, 1),
displayTVE = TRUE

)

plotPP Plot Spatial Point Process

Description

This function is used to plot a spatial point process. This does not split data and instead puts all
given data on a single plot.

Usage

plotPP(
data,
colorGuide = NULL,
ptSize = 1,
xlim = c(min(data[, 1]), max(data[, 1])),
ylim = c(min(data[, 2]), max(data[, 2])),
dropAxes = FALSE,
layerBasedOnFrequency = TRUE,
colors = NULL

)

plot_K_functions 11

Arguments

data Data.frame with x, y, and agent type (in that order)

colorGuide (Optional) String for ’guides(color=)’ in ggplot2. Usually NULL or ’none’ is
sufficient, but ggplot2::guide_legend() can also be used for more custom results.
Default is NULL.

ptSize (Optional) Numeric indicating point size. Default is 1.

xlim (Optional) Two value numeric vector indicating the size of the region in the
x-direction. Default is c(min(x), max(x)).

ylim (Optional) Two value numeric vector indicating the size of the region in the
y-direction. Default is c(min(y), max(y)).

dropAxes (Optional) Boolean indicating if the x and y axis title and labels should be
dropped. Default is FALSE.

layerBasedOnFrequency

(Optional) Boolean indicating if the data should be layer based on the number
of agents of the type. Default is TRUE.

colors (Optional) Vector of colors for the points. Default is NULL, or ggplot2 selected
colors.

Value

ggplot2 plot of the spatial point process.

Examples

ppplot <- plotPP(
TNBC_pheno[

TNBC_pheno$Person == 1,
c("cellx", "celly", "Phenotype")

],
colorGuide = "none"

)

plot_K_functions Compare K Functions Between outcomes

Description

This function plots K functions from different outcomes for comparison. Group means are included
as bold lines. Additionally a reference line for a spatially random process can be included.

Usage

plot_K_functions(data, inc.legend = TRUE, inc.noise = FALSE)

12 plot_K_functions

Arguments

data Data.frame with named columns r, K, unit, and outcome. The column r indicates
the radius of checked K function, K indicates the K function value, unit specifies
the unique K function, and outcome indicates the unit outcome.

inc.legend (Optional) Boolean indicating if the legend should be given. This will also in-
clude numbers to indicate if any K functions are missing. The default is TRUE.

inc.noise (Optional) Boolean indicating if a gray, dashed line should be included to show
what spatially random noise would be like. The default is FALSE.

Value

ggplot2 object showing the K function with a superimposed average.

Examples

Example 1
tmp <- getKFunction(TNBC_pheno[TNBC_pheno$Class == 0, -1],

agents = c("Tumor", "Tumor"),
unit = "Person",
rCheckVals = seq(0, 50, 1)

)
tmp1 <- getKFunction(TNBC_pheno[TNBC_pheno$Class == 1, -1],

agents = c("Tumor", "Tumor"),
unit = "Person",
rCheckVals = seq(0, 50, 1)

)
tmp_1 <- tidyr::pivot_longer(data = tmp, cols = K1:K18)
tmp1_1 <- tidyr::pivot_longer(data = tmp1, cols = K1:K15)

data_plot <- rbind(
data.frame(

"r" = tmp_1$r,
"K" = tmp_1$value,
"unit" = tmp_1$name,
"outcome" = "0"

),
data.frame(

"r" = tmp1_1$r,
"K" = tmp1_1$value,
"unit" = paste0(tmp1_1$name, "_1"),
"outcome" = "1"

)
)

pk1 <- plot_K_functions(data_plot)

Example 2
tmp <- getKFunction(TNBC_pheno[TNBC_pheno$Class == 0, -1],

agents = c("Tumor", "B"), unit = "Person",
rCheckVals = seq(0, 50, 1)

)

predict_funkyForest 13

tmp1 <- getKFunction(TNBC_pheno[TNBC_pheno$Class == 1, -1],
agents = c("Tumor", "B"), unit = "Person",
rCheckVals = seq(0, 50, 1)

)

tmp_1 <- tidyr::pivot_longer(data = tmp, cols = K1:K18)
tmp1_1 <- tidyr::pivot_longer(data = tmp1, cols = K1:K15)

data_plot <- rbind(
data.frame(
"r" = tmp_1$r,
"K" = tmp_1$value,
"unit" = tmp_1$name,
"outcome" = "0"

),
data.frame(

"r" = tmp1_1$r,
"K" = tmp1_1$value,
"unit" = paste0(tmp1_1$name, "_1"),
"outcome" = "1"

)
)

pk2 <- plot_K_functions(data_plot)

predict_funkyForest Predict a funkyForest

Description

This function gets the predicted value from a funkyForest model.

Usage

predict_funkyForest(model, data_pred, type = "all", data = NULL)

Arguments

model funkyForest model. See funkyForest. A list of CART models from rpart. Addi-
tionally this is given in funkyModel.

data_pred data.frame of the data to be predicted.

type (Optional) String indicating type of analysis. Options are pred or all. The choice
changes the return to best fit intended use.

data (Optional) Data.frame of full data. The data used to fit the model will be ex-
tracted (by row name).

14 simulateMeta

Value

The returned data depends on type:

• type=’pred’: returns a vector of the predictions

• type=’all’: returns a vector of the predictions

Examples

data_pp <- simulatePP(
agentVarData =
data.frame(

"outcome" = c(0, 1),
"A" = c(0, 0),
"B" = c(1 / 50, 1 / 50)

),
agentKappaData = data.frame(

"agent" = c("A", "B"),
"clusterAgent" = c(NA, "A"),
"kappa" = c(10, 5)

),
unitsPerOutcome = 5,
replicatesPerUnit = 1,
silent = FALSE

)
pcaData <- getKsPCAData(data_pp,

replicate = "replicate",
xRange = c(0, 1), yRange = c(0, 1), silent = FALSE

)
RF <- funkyForest(data = pcaData[-2], nTrees = 5) #
pred <- predict_funkyForest(

model = RF$model, type = "all",
data_pred = pcaData[-2],
data = pcaData[-2]

)

simulateMeta Simulate Meta Variables

Description

This function simulates meta-variables with varying distributions to append to some data.

Usage

simulateMeta(
data,
outcome = colnames(data)[1],
metaInfo = data.frame(var = c("randUnif", "randBin", "rNorm", "corrUnif", "corrBin",
"corrNorm"), rdist = c("runif", "rbinom", "rnorm", "runif", "rbinom", "rnorm"),

simulateMeta 15

outcome_0 = c("0.5", "0.5", "1", "0.5", "0.6", "1"), outcome_1 = c("0.5", "0.5", "1",
"0.75", "0.65", "1.5"), outcome_2 = c("0.5", "0.5", "1", "0.95", "0.75", "1.5"))

)

Arguments

data Data.frame with the outcome and unit. Typically this also includes PCA data as
it is run after computing the principle components (see examples).

outcome (Optional) String for column title of the data’s outcome. Default is the first
column.

metaInfo (Optional) Data.frame indicating the meta-variables (and properties) to generate.
Default has some examples of possible options.
The data.frame has a var column, rdist column, and columns for each outcome.
The var column names the meta-variables, rdist indicates the distribution (op-
tions are runif, rbinom, and rnorm), and the outcome columns indicate mean of
the variable for that outcome.
In order to allow designation of the expected values, the following rules are
imposed on each distribution:

• runif: a=0, so b is modified,
• rbinom: n=1, so this defines the probability
• runif: variance is set to 1

Details

Notes: runif may induce useless information so don’t recommend correlating it

Value

Data.frame of the original data with meta-variables appended (as columns) at the end.

Examples

data <- simulatePP(
agentVarData = data.frame(
"outcome" = c(0, 1, 2),
"A" = c(0, 0, 0),
"B" = c(1 / 100, 1 / 500, 1 / 1000)

),
agentKappaData = data.frame(

"agent" = c("A", "B"),
"clusterAgent" = c(NA, "A"),
"kappa" = c(10, 3)

),
unitsPerOutcome = 5,
replicatesPerUnit = 1

)
pcaData <- getKsPCAData(

data = data, replicate = "replicate",
xRange = c(0, 1), yRange = c(0, 1)

16 simulatePP

)
pcaMeta <- simulateMeta(pcaData)

Another simple example
data <- simulateMeta(

data.frame("outcome" = c(0, 0, 0, 1, 1, 1), "unit" = 1:6)
)

simulatePP Simulate a Point Process

Description

This function simulates a point pattern with optional clustering (visible and invisible). Multiple
outcomes, units, and replicates are possible, e.g. a 3 stage disease (outcomes) over 20 people
(units) with 3 images each (replicates).

Usage

simulatePP(
agentVarData = data.frame(outcome = c(0, 1, 2), A = c(0, 0, 0), B = c(1/100, 1/500,
1/500), C = c(1/500, 1/250, 1/100), D = c(1/100, 1/100, 1/100), E = c(1/500, 1/500,
1/500), F = c(1/250, 1/250, 1/250)),

agentKappaData = data.frame(agent = c("A", "B", "C", "D", "E", "F"), clusterAgent =
c(NA, "A", "B", "C", NA, "A"), kappa = c(20, 5, 4, 2, 15, 5)),

unitsPerOutcome = 20,
replicatesPerUnit = 5,
silent = FALSE

)

Arguments

agentVarData (Optional) Data.frame describing variances with each agent type.
The data.frame has a outcome column and a named column for each agent type.
Currently, these names are mandatory.

agentKappaData (Optional) Data.frame describing agent interactions.
The data.frame has a agent column giving agent names (matching agentVar-
Data), a clusterAgent column indicating which agent the agent clusters (put NA
if the agent doesn’t cluster or clusters a hidden agent / self-clusters), and a kappa
column directing the number of agents of per replicate.

unitsPerOutcome

(Optional) Numeric indicating the number of units per outcome.
replicatesPerUnit

(Optional) Numeric indicating the number of replicates, or repeated measures,
per unit.

silent (Optional) Boolean indicating if progress output should be printed.

TNBC 17

Value

Data.frame containing each point the defined patterns.

The data.frame has columns for outcome, x coordinate, y coordinate, agent type, unit, and replicate
id.

Examples

data <- simulatePP(
agentVarData = data.frame(
"outcome" = c(0, 1),
"A" = c(0, 0),
"B" = c(1 / 100, 1 / 500),
"C" = c(1 / 500, 1 / 250),
"D" = c(1 / 100, 1 / 100),
"E" = c(1 / 500, 1 / 500)

),
agentKappaData = data.frame(

"agent" = c("A", "B", "C", "D", "E"),
"clusterAgent" = c(NA, "A", "B", "C", NA),
"kappa" = c(10, 3, 2, 1, 8)

),
unitsPerOutcome = 4,
replicatesPerUnit = 1

)

TNBC Triple Negative Breast Cancer Data

Description

A funky model ready set of principle components from K functions based on triple negative breast
cancer data from patients. The original data was proteins as coded in T/F values. Additionally, the
age meta-variable was added.

Usage

TNBC

Format

TNBC:
A data frame with 33 rows and 1398 columns:

Class Outcome of each patient
Person Person for each image
NA_Si_PC1 through tumerYN_tumerYN_PC3 Principle components of the K functions for

the named interactions
age Meta-variable for patient age ...

18 TNBC_pheno

Source

https://www.angelolab.com/mibi-data

TNBC_meta Triple Negative Breast Cancer Phenotypes

Description

Data of meta-variable age related to triple negative breast cancer biopsies from patients.

Usage

TNBC_meta

Format

TNBC_meta:
A data frame with 33 rows and 2 columns:

Person Person for each image
Age Meta-variable for patient age ...

Source

https://www.angelolab.com/mibi-data

TNBC_pheno Triple Negative Breast Cancer Phenotypes

Description

Data of triple negative breast cancer biopsies from patients.

Usage

TNBC_pheno

Format

TNBC_pheno:
A data frame with 170,171 rows and 5 columns:

Class Outcome of each patient
Person Person for which each cell is related
cellx, celly The x-y coordinates of the cell
Phenotype The classified phenotype for the cecll ...

https://www.angelolab.com/mibi-data
https://www.angelolab.com/mibi-data

TNBC_pheno 19

Source

https://www.angelolab.com/mibi-data

https://www.angelolab.com/mibi-data

Index

∗ datasets
TNBC, 17
TNBC_meta, 18
TNBC_pheno, 18

computePseudoROCCurves, 2

funkyForest, 3
funkyModel, 4

getCountData, 6
getKFunction, 7
getKsPCAData, 9

plot_K_functions, 11
plotPP, 10
predict_funkyForest, 13

simulateMeta, 14
simulatePP, 16

TNBC, 17
TNBC_meta, 18
TNBC_pheno, 18

20

	computePseudoROCCurves
	funkyForest
	funkyModel
	getCountData
	getKFunction
	getKsPCAData
	plotPP
	plot_K_functions
	predict_funkyForest
	simulateMeta
	simulatePP
	TNBC
	TNBC_meta
	TNBC_pheno
	Index

